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Abstract 
This  paper  represents  the  Method  of  Moments (MoM)  for  

the  evaluation  of  the linear charge density on finite straight 

segment of thin charged conducting wire. We assume that the 

charge density piecewise constant over the length and the electric 

potential are is one volt. The conducting structures are modeled 

by planar sub domains. The Method of Moments is employing 

pulse and delta as a basis and testing function, respectively, is 

used for analysis. The exact formulation for the matrix element is 

evaluated for sub domains, and we obtain a symmetric matrix of 

Toeplitz. 

 

Keywords: Methods of Moments, Charge density, Conducting 

Wire, Electric Potential, Toeplitz Matrix.. 

1. Introduction 

The Electromagnetic (EM) modeling and determinate of 

charge density systems has been the subject of extensive 

research in the last three decades. While in the past, design 

and distribution of charge may have been considered a 

secondary issue in overall system design, today it plays a 

critical role in spacecraft [1][2][9]. The  accurate  

evaluation  of  charge distribution  and  capacitance  of  

metallic  structures  is  an important  step  in  design  of  a  

high  frequency  integrated circuits. In this paper, it has 

been chosen the square shape of the sub domains because 

of its ability to conform easily to any geometrical surface 

or shape and at the same time to maintain simplicity  of  

approach  compared  to  the  another  shaped modeling. 

The MoM  is  based  upon  the  transformation  of  an 

integral  equation,  into  a  matrix  equation  by  employing 

expansion of the unknown in terms of known basis 

functions with  unknown  coefficients  such  as  charge  

distribution  is to be determined. Much of what the method 

of moments is used for analysis and design of antennas. As 

an antenna is thin, it is possible to view how it can be 

represented as a line.2. Electrostatic problems 

 

 

Because electrostatic problems are relatively simple, the 

problem of finding the potential that is due to a given 

charge distribution is often considered. They provide a 

good context for introducing algorithms used to solve 

integral equations. In this section, we will consider an 

integral equation approach to solve for the electric charge 

distribution, once the electric potential is specified. The 

electric potential at point r due to an electric charge density 

q is given by the integral. 

       

                          

   (1) 

 

 

If we know ( )V r , we can obtain the electric potential 

everywhere. If we instead know the electric potential but 

not the charge density, (1) becomes an integral equation 

for an unknown charge density. We will now solve this 

problem numerically for a pair of practical examples, the 

charged wire and plate [1] [2][3]. 

 

Where '( ', ', ')r x y z  denotes the source coordinates, 

( , , )r x y z  denotes the observation coordinates, 'dl  is the 

path of integration, and R is the distance from any point 

on the source to the observation point [1][3][4], which is 

generally represented by 

 

 

     (2) 

 

Equation (1) is used to calculate the potentials that are due 

to any know line charge density. The charge distribution 

on most configurations of practical interest, complex 

geometries, is not usually known, even when the potential 

on the source is given. It is the nontrivial problem of 

determining the charge distribution, for a specified 

potential, that is to be solved here using an integral 
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equation approach [1][3][4]. And our equation is a 

Fredholm integral equation, in general, these equations are 

written as 

 

 

   (3) 

 

 

Where the functions ( , )K x t and ( )g t  the limits a and b are 

known. The unknown function ( )xΦ is to be determined; 

the function ( , )K x t is called the kernel of the equation. The 

moment method is a common numerical technique used in 

solving integral equations such as in equation 3 [1][2] [5]. 

3. Finite straight wire 

 

Consider a straight conducting wire of radius a, and length 

( ) L L a>>  located in free space along the y axis, as shown 

in figure 1. The wire is given a normalized constant 

electric potential of 1 V. Our goal is to determine the 

charge density λ  along the wire using the moment of 

method. Once we determine λ , related field quantities can 

found [1][3] [4][5].  

 

 

 
 

Fig. 1  Thin wire of constant potential. 

 

 

Note that equation (1) is valid everywhere, including on 

the wire itself ( 1 )wireV V= . Thus, choosing the observation 

along the wire axis ( 0)x z= =  and representing the 

charge density on the surface of wire, at any point on the 

wire [1][4], equation (1) reduces to an integral equation of 

the form 

 

                   (4) 

 

                 

Where 

 

   (5) 

 

he observation point is chosen along the wire axis and the 

charge density is 

represented along the 

surface of the wire to avoid ( , ') 0R x x = , which 

would introduce a singularity in the integrand of (4). 

4. Thin wire segmentation 

We search to transform equation (4) into linear system of 

equation, and applied the method of moment. Let 

subdivide the wire into N sub segments each of 

length /x L N∆ = , as shown in figure 2 [1][3][4]. We 

assume that the charge density has a constant value and 

piecewise over the length of the wire [1][2][3]. 

 

Fig. 2 Thin conducting wire held at a constant potential. 

 

Mathematically, we write this as 

                                            (6) 

 

Where na are unknown weighting coefficients, and 

( ')nf x is a set of pulse functions that are constant on one 

segment but zero on all other segments 

 

                       (7) 

 

 

 

 

Since equation (4) applies for observation points 

everywhere one the wire, at a fixed point nx  known as the 

match point. 

                     (8) 
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The integration essentially finding in the area under a 

curve, if x∆  is small, the integration of ( ')
n

f x  over 

0 x L< <  is given by 

 

      (9) 

Where the interval L has been divided into N units of each 

length  x∆ . And the wire are divided into N segments of 

equal length x∆  as shown in figure 2, equation (8) 

becomes  

    (10) 

 

Where /x L N∆ =  and we assuming in equation 10 is 

that the unknown charge density 
n

λ  on the nth segment is 

constant. In equation (10) we have unknown 

constants 1 2, , ,
N

λ λ λK . Equation (10) must hold at all 

points on the wire, we obtain N similar equations by 

choosing N match points at 1 2, , , ,
k N

x x x xK K on the 

wire. Thus we obtain 

 

 

 

 

 

 

     

(11) 

 

 

 

 

 

 

 

5. Matrix of charge density 

 
We are guaranteed to find a unique solution for all values 

of the equation (11), we may therefore express the above 

system as a matrix vector equation with Za b= . And the 

match points 1 2, , , ,
k N

x x x xK K are placed at the 

center of each segment [5]. Equation (11) can be written as  

 

 

                (12) 

 

 

Where each 
mn

Z   term is equal to  
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With 
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In equation (12), [ ]λ  is the matrix whose elements are 

unknown. We can determine [ ]λ  

from equation (12) using Cramer’s 
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rule, matrix inversion, or Gaussian elimination technique, 

using matrix inversion. 

 

 

              (18) 

 

 

Where [ ]
1

Z
−

 is the inverse of matrix[ ]Z , in evaluating 

the diagonal elements of matrix [ ]Z in equation (11) or 

(15), caution must be exercised. Since the wire is 

conducting, a surface charge density 
s

σ  is expected over 

the wire surface. Hence at the center of each segment 

 

 

 

 

 

 

 

            

(19) 

 

 

 

 

 

 

 

 

 

 

Assuming a∆ �  
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Where 2
L s

aσ π σ= . Thus, the self terms m=n are  
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Equation (12) now becomes  
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6. Result 

Consider a thin conductive wire with length 1L m=  and 

radius, using equation (12) and with variation of N 

( /x L N∆ = ), a Matlab code can be developed, the plot 

is shown in figure 3. It should be expected that a smaller 

value of N would give a less accurate result and larger 

value of N would yield a more accurate result. However, if 

N is too large, we may have the computation problem of 

inverting the square matrix [ ]
1

Z
−

. The capacity of the 

computing facilities at our disposal can limit the accuracy 

of the numerical experiment. 
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Fig. 3 Charge distribution on 1m straight wire at 1V 

(a) N=10. (b) N=50. (c) N=100, (d) N=400 
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(h) 

 
Fig. 3 Charge distribution into wire with variation of radius. 

(e) a=L/7. (f) a=L/9. (g) a=L/13. (h) a=L/400 
 

 

7. Conclusion 

 
In all results, we show the computed charge density on the 

wire using 10, 50,100 and 400 segments, respectively. The 

representation of the charge at the lower level of 

discretization is somewhat crude, as expected. The 

increase to 400 unknowns greatly increases the fidelity of 

the result. Using the computed charge density, we then 

compute the potential at 100 points along the wire. The 

potential using 10 charge segments has a voltage near the 

expected value of 1V; it is not of constant value, especially 

near the ends of the wire. Our shows the potential obtained 

using 400 charge segments. The voltage is now nearly 

constant across the entire wire, except at the endpoints. 

Because we used a uniform segment size for the wire, the 

charge density tends to be somewhat oversampled in the 

middle of the wire and under sampled near the ends. As a 

result, the variation of the charge near the ends of the wire 

is not represented as accurately as in the center, and the 

computed voltage tends to diverge from the true value. 

Realistic shapes have irregular surface features such as 

cracks, gaps and corners that give rise to a more rapid 

variation in the solution at those points. In an attempt to 

increase accuracy, it is often advantageous to employ a 

denser level of discretization in the areas we expect the 

most variation. 
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